Host life-history strategy explains pathogen-induced sterility.
نویسنده
چکیده
Virulence is often equated with pathogen-induced mortality, even though loss of fecundity is also common. But while the former may be understood as a simple consequence of lost host resources for the purposes of pathogen transmission, pathogen-induced sterility is often not associated with changes in host mortality. As a result, a separate literature has emerged to explain fecundity effects of parasitism that has not been integrated into general theories of the evolution of virulence. Here, I present a model of pathogen-induced sterility that is based on the assumption that hosts and pathogens vie for the same host resources for both reproduction and maintenance. Loss of host fecundity can then be explained by the host compensating for its future loss of resources, before infection. Such preinfection ;;fecundity compensation" may often cause preinfection investment in maintenance to be as low as postinfection levels, despite a loss of total host resources after infection. Thus, sterility is simply explained as a host life-history strategy in a system where the pathogen necessarily steals host resources for its own transmission. In certain circumstances, the pathogen may even be able to manipulate the host to redirect resources away from reproduction and toward maintenance through castration, causing gigantism.
منابع مشابه
Fecundity compensation and tolerance to a sterilizing pathogen in Daphnia
Hosts are armed with several lines of defence in the battle against parasites: they may prevent the establishment of infection, reduce parasite growth once infected or persevere through mechanisms that reduce the damage caused by infection, called tolerance. Studies on tolerance in animals have focused on mortality, and sterility tolerance has not been investigated experimentally. Here, we test...
متن کاملPathogen evolution under host avoidance plasticity.
Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by exte...
متن کاملUnrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history.
Understanding pathogen infectivity and virulence requires combining insights from epidemiology, ecology, evolution and genetics. Although theoretical work in these fields has identified population structure as important for pathogen life-history evolution, experimental tests are scarce. Here, we explore the impact of population structure on life-history evolution in phage T4, a viral pathogen o...
متن کاملDirectly transmitted viral diseases: modeling the dynamics of transmission.
A key hurdle in understanding the spread and control of infectious diseases is to capture appropriately the dynamics of pathogen transmission. As people and goods travel increasingly rapidly around the world, so do pathogens; we must be prepared to understand their spread, in terms of the contact network between hosts, viral life history and within-host dynamics. This will require collaborative...
متن کاملPathogen-induced rapid evolution in a vertebrate life-history trait.
Anthropogenic factors, including climate warming, are increasing the incidence and prevalence of infectious diseases worldwide. Infectious diseases caused by pathogenic parasites can have severe impacts on host survival, thereby altering the selection regime and inducing evolutionary responses in their hosts. Knowledge about such evolutionary consequences in natural populations is critical to m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American naturalist
دوره 168 3 شماره
صفحات -
تاریخ انتشار 2006